An Extremal Characterization of Projective Planes

نویسندگان

  • Stefaan De Winter
  • Felix Lazebnik
  • Jacques Verstraëte
چکیده

In this article, we prove that amongst all n by n bipartite graphs of girth at least six, where n = q + q + 1 ≥ 157, the incidence graph of a projective plane of order q, when it exists, has the maximum number of cycles of length eight. This characterizes projective planes as the partial planes with the maximum number of quadrilaterals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Discs, Global Extremal Functions and Projective Hulls in Projective Space

Using a recent result of Lárusson and Poletsky regarding plurisubharmonic subextensions we prove a disc formula for the quasiplurisubharmonic global extremal function for domains in P. As a corollary we get a characterization of the projective hull for connected compact sets in P by the existence of analytic discs.

متن کامل

Lenz-Barlotti classes of semi-classical ordered projective planes

This paper concerns a generalization of Moulton planes. We consider these semi-classical projective planes over half-ordered fields and completely determine their Lenz-Barlotti classes in the case of finite planes and of ordered planes. We also obtain a characterization of the Desarguesian planes among the semi-classical planes in terms of linear transitivity. These results are applied to (topo...

متن کامل

Collinearity-preserving functions between Desarguesian planes.

Using concepts from valuation theory, we obtain a characterization of all collinearity-preserving functions from one affine or projective Desarguesian plane into another. The case in which the planes are projective and the range contains a quadrangle has been treated previously in the literature. Our results permit one or both planes to be affine and include cases in which the range contains a ...

متن کامل

Characterization of projective special linear groups in dimension three by their orders and degree patterns

The prime graph $Gamma(G)$ of a group $G$ is a graph with vertex set $pi(G)$, the set of primes dividing the order of $G$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $G$ of order $pq$. Let $pi(G)={p_{1},p_{2},...,p_{k}}$. For $pinpi(G)$, set $deg(p):=|{q inpi(G)| psim q}|$, which is called the degree of $p$. We also set $D(G):...

متن کامل

A Characterization of the Hermitian Variety in Finite 3-Dimensional Projective Spaces

A combinatorial characterization of a non–singular Hermitian variety of the finite 3-dimensional projective space via its intersection numbers with respect to lines and planes is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008